Projectors and system matrices in CASToR

October 22, 2024

Foreword

CASToR is designed to be flexible, but also as generic as possible. Any new implementation should
be thought to be usable in as many contexts as possible; among all modalities, all types of data, all
types of algorithms, etc.

Before adding some new code to CASToR, it is highly recommended to read the general docu-
mentation CASToR_general_documentation.pdf to get a good picture of the project, as well as the
programming guidelines CASToR__programming_guidelines.pdf. Also, the philosophy about adding
new modules in CASToR (e.g. projectors, optimizers, deformations, image processing, etc) is fully
explained in CASToR__add_new_modules.pdf. Finally, the doxygen documentation is a good resource
to help understanding the code architecture.

1 Summary

This HowTo guide describes how to add your own projector into CASToR or how to use your own
pre-computed system matrix. CASToR is mainly designed to be modular in the sense that adding a
new feature should be as easy as possible. This guide begins with a brief description of the projector
part of the CASToR architecture that explains the chosen philosophy. Then follows one step-by-step
guide that explains how to add a new projector by simply adding a new class with few mandatory
requirements, and another guide to use your own pre-computed system matrix by observing some
simple rules.

2 The projector architecture

The projector part of the code is based on 4 main classes: oProjectorManager, oProjectionLine,
vProjector and oSystemMatriz. To make a long story short, the main program will instantiate
and initialize the oProjectorManager, and during the reconstruction process, the oProjectorMan-
ager::ComputeProjectionLine() function will be used to get a oProjectionLine from the current event
provided as a parameter. The oProjectionLine is somewhat a container that holds the system ma-
trix elements computed by a vProjector or loaded by the oSystemMatrixz, with respect to the data
channel associated to the event.

The oProjectorManager, being the manager, is in charge of reading command line options and
instantiating either a vProjector or a oSystemMatriz with respect to what the user asks for. Forward
and backward operators can be different and of any type. The vProjector is an abstract class so
only its children can be used as actual projectors. It corresponds to on-the-fly projectors such as
Siddon for example. The oSystemMatriz class can directly be used to load your own pre-computed
system matrix, as long as you observe some mandatory rules about the format of the system matrix.
Note that time-of-flight PET data cannot be reconstructed using a pre-computed system matrix.

When a vProjector is used, the oProjectorManager calls the vProjector::Project() function. In
this function, the scanner is called to compute two cartesian coordinates associated to this event,
providing the line-of-response (LOR). The compression is also managed (i.e. when multiple physical



LORs are contributing to an event) by averaging the multiple cartesian coordinates associated to
each point of the LOR. Then, based on the data type (i.e. modality), the data mode (i.e. histogram
or list-mode) and whether the time-of-flight information is used in the case of PET data, one over
three different projection functions is called. These three different functions are the following:

ProjectWithoutTOF() : This function is used for all non-PET modalities, and for PET without
TOF data. Given two points, it simply computes the path of the line through the image.

ProjectTOFListmode() : This function is used for PET list-mode data with continuous TOF
information, that is to say with the original TOF measurement provided in units of time.
Given two points and the TOF measurement, it should compute the path of the line through
the image while applying a Gaussian kernel centered on the TOF position and of FWHM
corresponding to the TOF resolution of the data.

ProjectTOFHistogram() : This function is used for PET histogrammed data with binned TOF
information, that is to say with an additional TOF dimension over the histogram. Given
two points and the TOF bin, it should compute the path of the line through the image while
applying the TOF bin function, which is obtained by convolving the Gaussian kernel (centered
on the center of the TOF bin and of FWHM corresponding to the TOF resolution of the data)
convolved with a box function whose width equals the TOF bin width.

3 Implemented projectors

Several widespread projectors have already been implemented, this includes Siddon (original and
incremental version), Joseph, and Distance-driven projector. For a complete and exhaustive list of
all available projectors, use the related help option directly within the CASToR program. All the
projectors take into account only voxels pertaining both to the provided field of view and to the
line-of-response.

3.1 TOF

There are several ways for implementing TOF projection, using more or less approximations and
computational tradeoffs. The following method is used for all currently implemented projectors
(Siddon, Joseph, Distance-driven). The TOF uncertainty function is a Gaussian function with a
given FWHM, normalized so that its integral equals 1.

The main difference between TOF and nonTOF projection coefficients (system matrix elements)
lies in the coefficient component which stands for the length of the line-of-response through a voxel
(integration along the LOR through the voxel). For list-mode data, this component is replaced by
the integration of the TOF Gaussian uncertainty function along the LOR through the voxel. For
histogram TOF bin data, this component is replaced by an approximation of the integration (value of
the TOF Gaussian function multiplied by the length of the line-of-response through the voxel). The
width of the TOF bin is not taken into account here, because convolution can be costly. Instead,
since it should always be true that the sum of all TOF bin coefficients for a single voxel equals
the non TOF coefficient for this voxel, the TOF bin coefficients are scaled by ensuring, somewhat
artificially, that this condition is met. This implies that the convolution with the TOF bin width
can be approximated by a single multiplicative factor for all TOF coefficients for a single voxel.

By default, the TOF Gaussian function is truncated at 3 standard deviations, but this can be
changed using a specified projector parameter.

For more details about the undelying equations and their implementation, please refer to the
document dedicated to TOF.



4 Add your own projector

4.1 Basic concept

To add your own projector, you only have to build a specific class that inherits from the ab-
stract class vProjector. Then, you just have to implement a bunch of pure virtual functions cor-
responding to what you want your new projector specifically to realize. Please refer to the CAS-
ToR__add_new_modules.pdf guide in order to fill up the mandatory parts of adding a new module
(your new projector is a module); namely the auto-inclusion mechanism, the interface-related func-
tions and the management functions. Right below are some instructions to help you fill the specific
pure virtual projection functions of your projector.

To make things easier, we provide an example of a template class that already implements all
the squeleton. Basically, you will have to change the name of the class and fill the functions up
with your own code. The actual files are include/projector/iProjector Template.hh and src/projec-
tor/iProjector Template.cc and are actually already part of the source code. Also, we recommend
that you take a look at other implemented projectors.

4.2 Implementation of the projection functions

The projection functions that you have to implement are the three ones mentionned in the previous
section: Project WithoutTOF(), ProjectTOFListmode() and ProjectTOFHistogram(). All informa-
tion and the tools needed to implement these functions are fully described in the template source
file src/projector/iProjector Template.cc, so please refer to it.

For each projector, one must specify in the constructor if the projector is compatible with SPECT
attenuation correction. If all voxels contributing to a projection line are added to the oProjectionLine
in an ordered manner, from the outside to the detector (pointl to point2), then CASToR will be able
to automatically manage the attenuation correction for SPECT data (assuming obviously that an
attenuation map has been provided). If your projector meets this requirement, then do not forget to
set the boolean member m_compatible WithSPECTAttenuationCorrection to true in the constructor
of your projector; otherwise it is set to false by default in the constructor of vProjector.

5 Use your own pre-computed system matrix

This feature is not yet implemented in the CASToR code.



