
Optimizers and penalties in CASToR

October 22, 2024

Foreword

CASToR is designed to be flexible, but also as generic as possible. Any new implementation should
be thought to be usable in as many contexts as possible; among all modalities, all types of data, all
types of algorithms, etc.

Before adding some new code to CASToR, it is highly recommended to read the general docu-
mentation CASToR general documentation.pdf to get a good picture of the project, as well as the
programming guidelines CASToR programming guidelines.pdf. Also, the philosophy about adding
new modules in CASToR (e.g. projectors, optimizers, deformations, image processing, etc) is fully
explained in CASToR add new modules.pdf. Finally, the doxygen documentation is a very good
resource to help understanding the code architecture.

1 Summary

This guide describes how to add your own optimization algorithm into CASToR and how to define
penalties. CASToR is mainly designed to be modular in the sense that adding a new feature should
be as easy as possible. This guide begins with a brief description of the optimizer and penalty
parts of the CASToR architecture that explains the chosen philosophy. Then follows a step-by-step
guide that explains how to add a new optimizer by simply adding a new class with few mandatory
requirements, or a new penalty in the same way.

2 The optimizer and penalty architectures

In CASToR, an optimizer is defined as an optimization algorithm specific to an objective function.
In other words, the objective function and the optimization algorithm are regarded as a whole and
not separately.

The optimizer part of the code is based on 3 main classes: oOptimizerManager, vOptimizer and
vPenalty. The oOptimizerManager, being the manager, is in charge of reading command line options
and instantiating a vOptimizer and a vPenalty with respect to what the user asks for.

The vOptimizer is an abstract class, so only its children can be used as actual optimizers. It
corresponds to the optimization algorithm used within the iterative process, such as MLEM for
example, that does not include a penalty term, or OSL (One-Step-Late), that includes a penalty
term.

The vPenalty is also an abstract class, so only its children can be used as actual penalties. It
corresponds to the penalty term included in the objective function, that is added to the data-fidelity
term, and that some optimizers can take into account.

In CASToR, all iterative algorithms are decomposed in two main steps that we call data update
step and image udpate step. The data update step corresponds to the operations performed on each
event in the data space, used to compute the correction terms in this space that are then backward
projected into a correction image. The image update step corresponds to the operations performed
on each voxel of the image space, where the correction terms gathered in the image space during
the data update step are used to compute the new voxel value, also considering the sensitivity, the
penalty and the current voxel value.

1



The main program instantiates and initializes the oOptimizerManager, and during the recon-
struction process, four functions of the oOptimizerManager will be used:

PreDataUpdateStep(): This function is called at the beginning of a subset, before the loop
over all events. It basically calls the eponym function of vOptimizer which itself calls the
PreDataUpdateSpecificStep() function. This last function does nothing on purpose but being
virtual, so any specific optimizer can overload it to perform specific operations at this step.

DataUpdateStep(): This function is called inside the loop over all events, for each event. It calls
a series of functions of vOptimizer that split up the update step in the data space in smaller
steps: 1. forward projection, 2. optional step, 3. backward projection of the sensitivity for
histogram data, 4. optional step, 5. compute corrections, 6. optional step, 7. backward
projection of corrections, 8. compute FOMs. See below for a description of these functions.

PreImageUpdateStep(): This function is called between the loop over all events and the im-
age update step. It basically calls the eponym function of vOptimizer which itself calls the
PreImageUpdateSpecificStep() function. This last function does nothing on purpose but being
virtual, so any specific optimizer can overload it to perform specific operations at this step.
For optimizers that include a penalty term, this is where the penalty’s functions are called
(see below).

ImageUpdateStep(): This function is called at the end of a subset, after the PreImageUpdat-
eStep() function. It is used to perform the image update step by calling the eponym function
from vOptimizer. Its aim is to apply the image correction factors computed from all the calls
to the DataUpdateStep() function and the potential penalty.

Within the oOptimizerManager::DataUpdateStep() function, the following functions from vOp-
timizer are called in this order:

DataStep1ForwardProjectModel(): This function performs the forward projection of the cur-
rent image, taking all dynamic dimensions through their basis functions into account. It
applies all multiplicative corrections included in the system matrix and add the additive terms
to the result, so that the latter is directly comparable to the recorded data. It can deal with
emission or transmission data natively.

DataStep2Optional(): This function does nothing but being virtual, so that it can be overloaded
by specific optimizers if needed.

DataStep3BackwardProjectSensitivity(): This function first calls the pure virtual Sensitivi-
tySpecificOperations() function to compute the weight associated to the current event. It then
backward projects this weight into the sensitivity image, taking all multiplicative terms from
the system matrix into account. It is called only when using histogram data so that an event
corresponds to a histogram bin.

DataStep4Optional(): This function does nothing but being virtual, so that it can be overloaded
by specific optimizers if needed.

DataStep5ComputeCorrections(): This function calls the pure virtual DataSpaceSpecificOper-
ations() function to compute the correction terms associated to the current event.

DataStep6Optional(): This function does nothing but being virtual, so that it can be overloaded
by specific optimizers if needed.

DataStep7BackwardProjectCorrections(): This function performs the backward projection
of the previously computed correction terms into the so-called backward image to gather the
corrections from all events into the image space. It takes all dynamic dimensions through their
intrinsic basis functions into account, as well as all multiplicative corrections included in the
system matrix.

2



DataStep8ComputeFOM(): This function computes some figures-of-merit in the data space, if
asked for.

The vOptimizer::ImageUpdateStep() function performs the image update step. It loops over all
dynamic basis functions and for each voxel, compute the sensitivity using the ComputeSensitivity()
function and calls the pure virtual ImageSpaceSpecificOperations() function to compute the new
image value.

So basically, all operations specific to an optimizer without penalty are performed within the
three following pure virtual functions:

SensitivitySpecificOperations(): From the current data, forward model, projection line, etc,
it must compute the weight associated to the current event. This function is used only for
histogram data and thus for optimizers compatible with histogram data.

DataSpaceSpecificOperations(): From the current data, forward model, projection line, etc, it
must compute the correction term associated to the current event that will be back-projected.
It can deal with multiple values as specified by the member variable m nbBackwardImages.

ImageSpaceSpecificOperations(): From the current voxel value, the correction value(s) and the
sensitivity, it must compute the new image value.

When a penalty is included, some computations specific to the penalty need to be done before
the image update step. Such computations are implemented by the specific optimizer by overloading
the PreImageUpdateSpecificStep() function of the vOptimizer that does nothing by default. The
penalty itself is implemented inside the abstract class vPenalty which is instantiated and parame-
terized by the oOptimizerManager class, and then managed by the specific optimizer. Inside the
PreImageUpdateSpecificStep() function of the specific optimizer, the 5 following functions from the
vPenalty may be used:

GlobalPreProcessingStep(): This function does nothing by default but being virtual, so it can
be overloaded by the specific penalty. It is designed to be called outside of the loops over
dynamic and spatial dimensions.

LocalPreProcessingStep(): This function does nothing by default but being virtual, so it can be
overloaded by the specific penalty. It is designed to be called inside the loops over dynamic
and spatial dimensions as it takes all indices as parameters.

ComputePenaltyValue(): This function is a pure virtual function, so it has to be implemented
by the specific penalty. It takes all dynamic and spatial indices as parameters and is supposed
to return the value of the penalty term for these indices.

ComputeFirstDerivative(): This function is a pure virtual function, so it has to be implemented
by the specific penalty. It takes all dynamic and spatial indices as parameters and is supposed
to return the value of the first derivative of the penalty term for these indices.

ComputeSecondDerivative(): This function is a pure virtual function, so it has to be imple-
mented by the specific penalty. It takes all dynamic and spatial indices as parameters and is
supposed to return the value of the second derivative of the penalty term for these indices.

Optimizers that include a penalty term may not need the second derivative. Some penalties may
also not be twice differentiable. To deal with that, any optimizer that includes a penalty term has
to specify the minimum required derivative order of the penalty. Any penalty also has to specify
its own derivative order. A compatibility check is then performed during the initialization by the
oOptimizerManager. Nonetheless, all penalties have to implement the three pure virtual functions

3



ComputePenaltyValue(), ComputeFirstDerivative() and ComputeSecondDerivative(). Even if some
penalties may not strictly require to compute the penalty value for optimization purposes, this
function is used to compute the objective function for information purpose when the user asks for
it. If a penalty is not twice differentiable, the ComputeSecondDerivative() function is left empty,
because it will not be called.

3 Implemented optimizers and penalties

Implemented optimizers that do not admit a penalty term include:

• MLEM (for histogrammed transmission and emission data and list-mode emission data),

• MLTR from Van Slambrouck et al (for histogrammed transmission data),

• Landweber (for histogrammed emission and transmission data),

• NEGML from Nuyts et al (for histogrammed emission data),

• AML from Byrne (for histogrammed emission data),

• MLMUMAP (for histogram PET data including ACFs).

Implemented optimizers that admit a penalty term include:

• One-Step-Late from Green (for histogrammed transmission and emission data and list-mode
emission data),

• Penalized Preconditioned Gradient ML from Nuyts et al (for histogrammed emission data),

• BSREM II from Ahn and Fessler (for histogrammed emission data),

• Modified EM for penalized ML from De Pierro (for histogrammed emission data).

• APPGML from Millardet et al (for histogrammed emission data).

• ADMM with positive constraint in the projection space from Lim et al (for histogrammed
emission data).

Implemented penalties include:

• Markov Random Field penalizing differences between neighbors (including different neighbor-
hood shapes, proximity factors, Bowsher’s weights, and several potential functions),

• Median Root Prior (including different neighborhood shapes).

• Quadratic penalty (with a target image).

For a complete and exhaustive list of all available optimizers and penalties, use the related help
options directly within the CASToR program.

Note that the current generic iterative algorithms can use subsets of the data. Any optimizer
can thus benefit from the use of subsets. See the general documentation for a detailed description
of how the iterative algorithm uses subsets of the data.

4



4 Add your own optimizer

4.1 Basic concept

To add your own optimizer, you only have to build a specific class that inherits from the abstract
class vOptimizer. Then, you just have to implement a bunch of pure virtual functions corresponding
to what you want your new optimizer to specifically do. Please refer to the CASToR add new
modules.pdf guide in order to fill up the mandatory parts of adding a new module (your new op-
timizer is a module); namely the auto-inclusion mechanism, the interface-related functions and the
management functions. Right below are some instructions to help you fill the specific pure virtual
optimization functions of your optimizer.

To make things easier, we provide an example of template class that already implements all the
squeleton. Basically, you will have to change the name of the class and fill the functions up with your
own code. The actual files are include/optimizer/iOptimizerTemplate.hh and src/optimizer/iOpti-
mizerTemplate.cc and are actually already part of the source code. Also, we recommend that you
take a look at other implemented optimizers.

4.2 Implementation of the optimization functions

The optimization functions that you have to implement are the three ones mentionned in the previous
section: SensitivitySpecificOperations(), DataSpaceSpecificOperations() and ImageSpaceSpecificOp-
erations(). All information and the tools needed to implement these functions are fully described
in the template source file src/optimizer/iOptimizerTemplate.cc, so please refer to it. Aside these
three pure virtual functions, there are many virtual functions whose implementation in vOptimizer
do nothing on purpose, but that can be overloaded to perform other types of actions specific to
your optimizer. There are the optional functions that are included in the data update step; their
name are vOptimizer::DataStepXOptional(), where X is the sub-step number defining when they are
called in the data update step process. To perform specific operations inside a subset before and/or
after the loop on all events, there are the functions vOptimizer::PreDataUpdateSpecificStep() and
vOptimizer::PreImageUpdateSpecificStep() respectively. If the optimizer admits a penalty term, you
will most likely have to overload the PreImageUpdateSpecificStep() function to perform instructions
related to the computation of this penalty term.

Some optimizers may need sub steps in order to go through the data and/or image update steps
several times within each iteration. This can be done simply by setting the integer member m
nbSubSteps in the constructor (it is set to 1 by default in the constructor of vOptimizer) and then
by testing in any function the value of the integer member m currentSubStep which is automatically
updated by the vOptimizer. The number of sub-iterations in each sub-step can also be customized
using the member mp nbSubIterationsInSubSteps. It is allocated and initialized to 1 by default in
the function vOptimizer::Initialize() and must be customized in the function InitializeSpecific of the
optimizer if needed. During the iterations, the current sub-iteration index of the current sub-step
can be accessed through the integer member mp nbSubIterationsInSubSteps that is automtically
updated by the vOptimizer. Along the same lines, some optimizers may need to go through the data
and/or image update steps once before the iterations. The boolean member m needPreIteration can
be used in combination with the boolean member m isInPreIteration for this purpose. Note that
the current iteration index given by the integer member m currentIteration starts with the value
-1 if a pre iteration is used. In the same way, the equivalent boolean members m needPostIteration
and m isInPostIteration enable to go through the data and image update steps once more after all
the iterations are done. Subsets are used in combination with sub-steps but they do not exist within
the pre and post-iteration steps.

For optimizers highly differing from the way the vOptimizer was thought, all functions related to
the data update step and the image update step are virtual, so they can be overloaded to implement
alternative behaviours. For details about that, look at the doxygen documentation contained in the

5



include/optimizer/vOptimizer.hh file.

Finally, for any optimizer, there are different variables that must be set in the constructor,
according to what the optimizer can do. First, one must specify if the optimizer is compatible
with list-mode and/or histogram data. For example, MLEM is compatible with both types of data,
but NEGML is only compatible with histogram data. If your optimizer is compatible with list-
mode data, set the boolean member m listmodeCompatibility to true in the constructor. If your
optimizer is compatible with histogram data, set the boolean member m histogramCompatibility
to true in the constructor. Second, one must specify if the optimizer is compatible with emission
and/or transmission data. For example, MLEM is compatible with both types of data, but MLTR
is only compatible with transmission data and NEGML with emission data. If your optimizer is
compatible with emission data, set the boolean member m emissionCompatibility to true in the
constructor. If your optimizer is compatible with transmission data, set the boolean member m
transmissionCompatibility to true in the constructor. By default, all these booleans are set to
false in the constructor of vOptimizer. Third, one must specify if the optimizer admits a penalty
term, and if so, what is the minimum derivative order that the penalty must admit for being
used with the optimizer. If your optimizer admits a penalty term, set the integer member m
requiredPenaltyDerivativesOrder to the required minimum derivative order that the penalty must
admit. By default, this value is set to -1 in the constructor of vOptimizer (which means that the
optimizer does not admit a penalty term). If your optimizer need a first step through the data and
the image before the loop over iterations, set the boolean member m needPreIteration to true in
the constructor. If your optimizer need a final step through the data and the image after the loop
over iterations, set the boolean member m needPostIteration to true in the constructor. By default,
these two booleans are set to false in the constructor of vOptimizer. If your optimizer need several
sub-steps within each iteration, set the integer member m nbSubSteps to the desired number in the
constructor. The number of sub-iterations for each sub-step must be set in the InitializeSpecific()
function of the optimizer using the member mp nbSubIterationsInSubSteps.

5 Add your own penalty

5.1 Basic concept

To add your own penalty, you only have to build a specific class that inherits from the abstract class
vPenalty. Then, you just have to implement a bunch of pure virtual functions corresponding to what
you want your new penalty to specifically do. Please refer to the CASToR add new modules.pdf
guide in order to fill up the mandatory parts of adding a new module (your new penalty is a mod-
ule); namely the auto-inclusion mechanism, the interface-related functions and the management
functions. Right below are some instructions to help you fill the specific pure virtual functions of
your penalty.

To make things easier, we provide an example of template class that already implements all
the squeleton. Basically, you will have to change the name of the class and fill the functions up
with your own code. The actual files are include/optimizer/iPenaltyTemplate.hh and src/optimiz-
er/iPenaltyTemplate.cc and are actually already part of the source code. Also, we recommend that
you take a look at other implemented penalties.

5.2 Implementation of the specific penalty functions

First, one must specify the derivative order of the penalty. This must be done in the constructor by
specifying the value of the integer member m penaltyDerivativesOrder.

Then, the functions that you have to implement are the three following ones: ComputePenalty-
Value(), ComputeFirstDerivative() and ComputeSecondDerivative(). If the penalty admits strictly
less than two derivatives, then the ComputeSecondDerivative() function must still be implemented

6



(because it is pure virtual) but can be left empty as it will never be called if the member m
penaltyDerivativeOrder is appropriately set. Some information is provided in the template source
file src/optimizer/iPenaltyTemplate.cc, so please refer to it. See also already implemented penalties
to get a good understanding.

Aside these three pure virtual functions, there are two virtual functions whose implementation in
vPenalty do nothing on purpose, but that can be overloaded to perform other types of actions specific
to your penalty. These functions are GlobalPreProcessingStep() and LocalPreProcessingStep(), as
explained above.

7


