
Using CASToR Gitlab interface

October 22, 2024

Foreword

This document just describes the configuration of CASToR Gitlab platform, and some basic guid-
ances for developpers regarding how to use it.

1 CASToR-collaboration

CASToR’s Gitlab group is reacheable at this address https://gitlab.com/castor-collaboration. It
currently contains the software distribution as the CASToR project, and another project (CASToR
Tools) dedicated to regroup miscellaneous programs and scripts related to the use of CASToR.

2 CASToR project

The first step for a new member is to download the project, e.g using the following command with
ssh: git clone git@gitlab.com:castor-collaboration/castor.git

The clone button at the right side provides different way to clone the project (fig. 1, blue
square). The contents of the different branches are browsable using the button on the left (fig. 1,
green square). The develop branch is the default branch. There are currently different categories of
branch in the project:

Figure 1: Gitlab CASToR project main interface

master: Branch dedicated to host the official CASToR versions. No one except main CASToR
developers can push into this branch.

develop: The main CASToR develop branch, dedicated to gather all completed developments which
will be released at some point in the master branch. The development of a new feature or the
correction of a bug must not be performed directly in this branch, but in a specific branch

1



created from this branch. Once the work is done, the developer can ask for a merge request
into the develop branch. In the current configuration, only the Maintainers (main CASToR
developers) can validate the request. This branch also contains a pipeline (see section 3, red
square) to check whether new modifications unpredictedly affect other parts of the code. For
each push or merge request, the modifications will be checked by the pipeline. If it is expected
that a new version alters some parts of the code, the pipeline must be modified accordingly.

feature/xxx: Branches dedicated to new features. Once the implementation is done, it must be
merged into the develop branch.

hotfix/xxx: Branches dedicated to bug corrections. Once the implementation is done, it must be
merged into the develop branch.

3 Pipeline

The pipeline aims at checking different parts of the code after a modification. It checks the com-
pilation of CASToR in different configurations and perform several image reconstruction jobs using
various methods and algorithms across different modalities. The pipeline is described in the .gitlab-
ci.yml file (fig. 1, red square). The main image (docker container) for most tests is currently an
ubuntu 20.04 system with root 6.22, from rootproject.

Compilation and reconstruction tests are performed in parallel. Reconstruction tests start once
the main compilation test is performed. The status of the pipeline during and after testing can be
monitored from the CI/CD tab (fig 1, orange square). If a pipeline fails, the log can be accessed
by clicking on the related job (fig 2). The current pipeline takes about 20 minutes to complete.
Current checks are listed below:

Figure 2: Gitlab CASToR project main interface

BUILD TESTS:

build main mk: Main compilation using makefile. The resulting job artifacts (i.e. compiled bi-
naries) will be used for image reconstruction tests.

build alt mk: Makefile compilation with alternative data types (FLTNB/FLTNBDATA/FLTNBLUT:
double, INTNB:int64 t).

build cmk: Cmake compilation.

build osx mk: Makefile compilation on osx system.

JOB TESTS:

test ben ct: CT recon benchmark.

test ben spect: SPECT recon benchmark.

2



test ben pet hist: PET histogram recon benchmark.

test ben pet list reco: PET list-mode recon benchmark with pre-computed sensitivity image.

test ben pet list sens: PET list-mode sensitivity image computation.

test ben pet dynamic: PET 4D reconstruction (kinetic model) example.

test ben pet dynamic rigid-mot: PET 4D reconstruction (rigid motion correction) example.

test ben gate converter: Various GATE data conversion tests (geometry and root datafile con-
versions).

4 Members and branch configuration

Members of Gitlab projects can have different roles, i.e Owner/Maintainer, Developer, Reporter and
Guest in decreasing permission order. Developer should be the standard role for new members, which
allows to create new branches and merge request. Main CASToR developers have Maintainer status,
which grants the possibility to directly edit files in develop and master branches. Details about each
role’s permissions are described in the following link: https://docs.gitlab.com/ee/user/permissions.html.

Every old branches from CASToR previous private git repository are restricted to Maintainer
rights only. In other words, a Developer only has read access to these branches, contrary to the
branches he/she created by him/herself.

5 Discourse forum

All CASToR users are strongly encouraged to share their experience with CASToR by posting
questions/answers, suggestions or new developments to the CASToR discourse forum. Note that
technical support can be exclusively provided through the forum. To subscribe or browse the forum
to search through any previous discussions, go to the following link:

https://castor-project.discourse.group/

Figure 3: CASToR discourse forum

3



6 Mailing-List

The forum also acts as a mailing-list. Once you subscribed, head to your Preferences/Emails settings
to enable the Enable mailing list mode parameter, and save changes.

Once it is done, you can directly create (or answer to) any topic by sending email to:

castor_project+general-discussions-5@discoursemail.com

Figure 4: How to enable/disable mailing list

If you want to stop receiving email, you can then disable this feature from your profile settings.

4


