
How to add a custom image-based dynamic model into CASToR

October 22, 2024

Foreword for developers

Before adding some code to CASToR, it is highly recommended to read the general documentation
CASToR general documentation.pdf to get a good picture of the project, as well as the program-
ming guidelines CASToR HowTo programming guidelines.pdf. Also, the philosophy about adding
new modules in CASToR (e.g. projectors, optimizers, deformations, dynamic models, etc) is fully
explained in CASToR HowTo add new modules.pdf. Finally, the doxygen documentation is a very
good resource to help understanding the code architecture.

1 Summary

This HowTo guide describes how to add a new dynamic model class for image-based dynamic
applications such as kinetic modeling or any temporal regularization. The model could be applied
to the images of chronological frames of a dynamic acquisition (simply refered by frames in the
CASToR nomenclature and in this document) or to the images of respiratory and/or cardiac gates of
a gated dataset (whose events belonging to the same state (i.e phase or amplitude) of a physiological
motion have been previously regrouped into several gates).

This guide begins with a general description of the dynamic model part of the CASToR archi-
tecture that explains the chosen implementation (section 2). The implemented models and their
parameters are presented in section 3. Section 4 briefly introduces the toolkit used to perform post-
reconstruction kinetic fitting. Then follows a step-by-step guide that explains how to add a new
dynamic model by simply adding a new class with few mandatory requirements (section 5). The
last section (6) lists command-line-options linked to dynamic reconstruction.

1

2 The dynamic module architecture

The dynamic model part of the code is based on 2 main classes: oDynamicModelManager and
vDynamicModel, located in the dynamic subfolder. If enabled with the -dynamic-model command
line option, the main program will instantiate and initialize the oDynamicModelManager, which is
in charge of reading command line options and instantiating the child of vDynamicModel. It will call
the InitializeSpecific() function of each dynamic module. To get some help on how to use it and a list
of the implemented processing modules, execute the program with the option -help-dynamic-model.

During the iterative reconstruction process, at the end of each iteration/subset loop, the Ap-
plyDynamicModel() function of the manager will call the EstimateModel() and EstimateImage()
functions of the vDynamicModel.

EstimateModel(): This function will call the EstimateModelParameters() function which is im-
plemented by the child class. This function is dedicated to the estimation of any parameters
of the model. This step can be skipped by setting the No parameters update tag to 1 in the
dynamic model configuration file.

EstimateImage(): This function will call the EstimateImageWithModel() function which is im-
plemented by the child class. This function is dedicated to the recomputation of the activity
image using the estimated parametric images estimated with EstimateModelParameters(). In
other words, the time-activity curves of each voxel will be recomposed using the model func-
tions and the estimated parameters. This step can be skipped by setting the No image update
tag to 1 in the dynamic model configuration file. Additionally, this process can be enabled
after a x number of iterations by setting the following tag in the configuration file: Num-
ber of iterations before image update: x.

The estimated parametric images will be saved on disk at each iteration/subset in a similar way
than regular reconstructed image, depending on the -it command line option. This can however be
disabled by setting the Save parametric images tag to 0 in the configuration file.

Depending on the implementation, some dynamic models store the information about non-
realistic estimated value or issues during the estimation in specific voxels. These ”blacklisted”
voxels are usually ignored during the parameters estimation and/or the image recomposition steps
in order to avoid that wrong values get propagated into the images. The image of these voxels can
be written on disk by setting the Save blacklisted voxels images tag to 1 in the configuration file.

Depending on the implementation, a specific mask can be provided in order to indicate voxel in
which the dynamic model should be applied or not. As for any images with CASToR, the image
file format of the mask must be interfile, and the path to the header must be provided with the
following field: Mask: path/to/image/header.

If you wish to implement a new dynamic model, please have a look to the section 5.

2

3 Implemented dynamic models

The -dynamic-model command line option allows to specify a dynamic model and its potential
configuration parameters (see details in section 6). The following dynamig models are currently
implemented. More details about the available dynamic models and information regarding their
initialization can be displayed using the command -help-dynamic-model:

LinearModel: This class implements a general linear dynamic model applied between the images
of a dynamic acquisition. The model is applied on a voxel-by-voxel basis between the images
of the frames and/or respiratory/cardiac gates. Section 3.1 describes how to use this model
and its parameters.

Patlak: This class implements the Patlak Model dedicated to model irreversible radiotracers : Pat-
lak CS, Blasberg RG: Graphical evaluation of blood-to-brain transfer constants from multiple-
time uptake data. J Cereb Blood Flow Metab 1985, 5(4):5 84-590.
DOI http://dx.doi.org/10.1038/jcbfm.1985.87

Spectral: This class implements the Spectral Model, first introduced by J. Cunningham et al. and
then used in PET reconstruction for temporal regularisation by Andrew Reader et al. It is used
to model radiotracer dynamic behaviour with a set of decaying exponential functions (exp(-β t)
) Cunningham, V. J., and Jones, T. (1993). Spectral Analysis of Dynamic PET Studies. Jour-
nal of Cerebral Blood Flow and Metabolism, 13(1), 1523. https://doi.org/10.1038/jcbfm.1993.5
Reader, A. J., and Verhaeghe, J. (2014). 4D image reconstruction for emission tomogra-
phy. Physics in Medicine and Biology, 59(22), R371R418. https://doi.org/10.1088/0031-
9155/59/22/R371

1TCM: This class implements a 2 compartments kinetic model, or 1 Tissue Compartment Model
(1TCPM), for perfusion quantitation.

To use one of these dynamic model, one must use the following option:
-dynamic-model MODEL NAME:path/to/configuration/file.

3

3.1 iLinearModel:

This class implements a general linear dynamic model applied between the images of a dynamic
acquisition. The model is applied on a voxel-by-voxel basis between either the images of the frames
or respiratory / cardiac gates. Several models could be used simultaneously on 5D/6D datasets (i.e
dynamic gated acquisitions splitted in chronological time frames, or dual-gated acquisitions). At
each iteration and subset, the parametric images of the model, and optionally the basis functions
of the model, are estimated using the nested EM algorithm. Several variables control different
parameters of the algorithm, such as the number of iterations of EM iterations for the model, the
ratio of parametric images updates before basis function updates. This class must be initialized
using a configuration file with the following command-line option:

-dynamic-model LinearModel:/path/to/conf/file

The configuration file must contain one (or several) couple(s) of BEGIN/END keywords to define
at which dynamic level of modelling the user-provided parameters must be applied:

• DYNAMIC FRAMING / ENDDF : model related to the chronological dynamic frames of the
dynamic dataset

• RESPIRATORY GATING / ENDRG : model related to the respiratory gates of the dynamic
dataset

• CARDIAC GATING / ENDCG : model related to the cardiac gates of the dynamic dataset

The following parameters could be defined inside these keywords to set a dynamic model at a
specific dynamic level:

• Number basis functions: x (mandatory)

The number x of basis functions (and parametric images) defined in the model

• Basis functions: list (mandatory)

Basis function initial values (list of coefficients for each frame or gate, separated by commas.
Each functions must be entered on new lines)

• Optimisation method: x (mandatory)

Select the optimisation method to be used for voxel-wise parameter estimation. The different
available methods are:

x=0: Direct

Implementation of basis functions side by system matrix in each tomographic iterative
loop (/! Currently not compatible with motion correction)

x=1: Nested EM

Parameters estimation using the nested-EM method. This method integrates an EM-like
estimation of the parametric image using the following equation, where x̂v,t represents
the intermediate estimation of the image.

θ̂n+1
vf =

θ̂nvf∑
tBtf

∑
t

Btf
x̂v,t

xv,t(θ̂nv)
(1)

where θ, B and X are the parameters of the model, basis functions of the model, and
images respectively. The indices v, f, t and n refer to the voxels, model basis functions,
temporal dimension (either frame or gate) and iteration respectively. A data-driven
approach can be set using the following

The number of sub-iteration of the nested-EM is definined with the keyword Num-
ber model iterations: x, where x represents the number of iteration (as n in the equation
1).

4

A data-driven approach can be set, where the coefficient of the basis functions are es-
timated along with the parameters. In this case, the iteration n defines the number of
cycle. A cycle which contains several update of the parametric images, followed by several
updates of the basis function coefficients (by defaut, one update of each is performed in
one cycle). The following parameters can be used to customize the cycles:

– Basis function update ratio: x. Number of updates of parametric images and basis
functions inside a cycle. Cycles consist in x iterations of the parametric images,
following by x iterations of the basis functions. Only the parametric images are
updated by default.

– Basis function start ite : x. Starting reconstruction iteration (not nested-EM iter-
ation) for the update of basis functions. If negative, no update of the basis functions
is performed (only parametric images are updated by default).

x=2: NNLS: Iterative non-negative Least-Square (frame model only). This code is de-
rived from Turku PET center libraries, authors: Vesa Oikonen and Kaisa Sederholm
(http://www.turkupetcentre.net/petanalysis/index.html). Based on C.L. Lawson and
R.J. Hanson, Solving Least Squares Problems. Weights can be added for WLS with the
following keywords:

– Number weight values: x. Enter the number of weights to be applied for each dy-
namic frame for performing WLS optimisation.

– Weight values: x. Enter the weight values to be applied for each dynamic frame (
within DYNAMIC FRAMING/ENDDF) on one single line, separated by ’,’.

• Parametric images init: path (optional)

Parametric images initialization using an interfile image located at the provided path. Without
initialization, all voxel will be set to 1 by default)

Listing 1 below presents an example of configuration file to initialize 2 dynamic models. The
first model is applied between frames, the second one between respiratory gates images.

5

Listing 1: Example of LinearModel initialization.

1

2 DYNAMIC FRAMING

3 Number_basis_functions : 2

4 Basis_functions :

5 23682.79 , 25228.74 , 26636.99 , 27923.61 , 29101.16

6 5.4, 4.91, 4.48, 4.1, 3.75

7 ENDDF

8

9 RESPIRATORY GATING

10 Number_basis_functions : 6

11 Basis_functions :

12 1, 0.8, 0.6, 0.4, 0.2, 0.01

13 0.7, 0.9, 0.7, 0.5, 0.3, 0.1

14 0.4, 0.6, 0.8, 0.6, 0.4, 0.2

15 0.2, 0.4, 0.6, 0.8, 0.6, 0.4

16 0.1, 0.3, 0.5, 0.7, 0.9, 0.7

17 0.01, 0.2, 0.4, 0.6, 0.8, 1

18 ENDRG

19

20 # optimisation method:

21 # x=0: Direct (Implementation of basis functions side by system ←↩
matrix in each tomographic iterative loop)

22 # x=1: Nested EM

23 # x=2: Iterative non -negative Least -Square (C.L. Lawson and R.J. ←↩
Hanson , Solving Least Squares Problems)

24 Optimisation_method: 1

25

26 # Number of iterations of the model parameters and basis functions ←↩
updates in one cycle of Nested EM

27 Number_model_iterations : 1

28

29 # Starting iteration for the update of basis functions (negative value←↩
: only the parameters are estimated)

30 Basis_function_start_ite : -1

31

32 # Ratio of update between parametric images and basis functions ←↩
updates cycle

33 # (Cycles consist in x iterations of the parametric images , following ←↩
by x iterations of the basis functions ,

34 # x being the ratio. 0 means only parametric images are updated)

35 Basis_function_update_ratio : 0

6

3.2 iLinearPatlakModel:

This class implements the Patlak Model (Patlak CS, Blasberg RG: Graphical evaluation of blood-
to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1985, 5(4):5
84-590. DOI http://dx.doi.org/10.1038/jcbfm.1985.87)

It is used to model radiotracers which follows as 2-tissue compartment model with irreversible
trapping. The Patlak temporal basis functions are composed of the Patlak slope (integral of the
reference TAC from the injection time divided by the instantaneous reference activity), and intercept
(reference tissue TAC).

It can be initialized using a configuration file with the following keywords and information

3.2.1 configuration file:

The file must be provided to the castor-recon main executable using the following command-line
options. The two parametric images (Patlak slope and intercept) will be initialized with 0.001 and
1.

-dynamic-model Patlak:/path/to/conf/file.txt

As this class inherits from the LinearModel class. The parameters must be declared inside the
couple of the following specific tags:

- DYNAMIC FRAMING/ENDDF
The following parameters must be defined inside these keywords to set a dynamic model at a

specific dynamic level:

• Basis functions: list (mandatory unless AIC is provided)

The coefficients of Patlak plot and intercept for each time frame (tf), on two successive lines,
separated by ’,’ : Basis functions: coeffPplottf1, coeffPplottf2, ..., coeffPplottfn coeffPintctf1,
coeffPintctf2, ..., coeffPintctfn

• AIC input file: path/to/file (mandatory unless basis functions provided directly)

Path to the sampled Input Function values for estimation of Patlak basis functions. This file
must contain the following information in successive lines, separated by ’,’:

AIC number of points: total number of data points

AIC time points: time points of the samples

AIC data points: activity values of the samples (in Bq/cc)

AIC units: time unit for the time points, either ’seconds’ or ’minutes’ (seconds by default)

• Parametric images init: path (optional)

Parametric images initialization using an interfile image located at the provided path. Without
initialization, all parametric voxels will be set to 0.001 and 1.0 for the Patlak slope and intercept
by default.

• Optimisation method: x (mandatory) optimisation method for Patlak parameters estima-
tion:
x=0: Direct (Implementation of basis functions side by system matrix in each tomographic
iterative loop)
x=1: Nested EM
x=2: Iterative non-negative Least-Square (C.L. Lawson and R.J. Hanson, Solving Least
Squares Problems)
x=3: Least-Squares linear regression

7

3.2.2 Command line options:

The Patlak class initialization can be directly made from the command line options. The list of
options must contain the coefficients of both Patlak functions (Integral of arterial input curve,
followed by arterial input curve) separated by commas, with the following template :

-dynamic-model Patlak, Icp,tf1, Icp,tf2, ..., Icp,tfn,Cp,tf1, Cp,tf2, ..., Cp,tfn

The parametric images will be initialized with 0.001 and 1.0 for Patlak slope and intercept by
default. The parametric images estimations will be written on disk for each iteration. Default
optimisation method is nested-EM.

8

3.3 SpectralModel:

This class implements the Spectral Model, first introduced by J. Cunningham et al. and then used
in PET reconustrction for temporal regularisation by Andrew Reader et al. It is used to model
radiotracer dynamic behaviour with a set of decaying exponential functions (exp(-β t)).

The decaying exponential functions are logarithmically equally spaced within the selected range
of β values. All decaying exponentials are convolved with the interpolated Arterial Input Curve,
before being discretised to the duration of the reconstruction frames. The model must be initialized
using a ASCII file with the following keywords and information.

As this class inherits from the iLinearModel class, the following parameters must be declared
inside the couple of the following specific tags:

- DYNAMIC FRAMING/ENDDF

• AIC input file: x (mandatory) The file containing the sampled Arterial Input Function.
The file must contain the following information in successive lines, separated by ’,’:

AIC number of points: total number of data points

AIC time points: time points of the samples

AIC data points: activity values of the samples (in Bq/cc)

AIC units: time unit for the time points, either ’seconds’ or ’minutes’ (seconds by default)

• Spectral functions options These options are required for the preperation of the Spectral
functions.

Number spectral functions: (mandatory) The number of spectral functions

Fastest rate: (mandatory) The rate (1/min) for the fastest decaying exponential

Slowest rate: (mandatory) The rate (1/min) for the slowlest decaying exponential

Full trapping basis function: (optional) Option to say whether we want to include a basis
function to model full trapping of tracer (1) or not (0 by default)

Blood fraction basis function: (optional) Option to say whether we want to include a basis
function to model the blood fraction of the tracer (1) or not (0 by default)

• Optimisation method: x (mandatory)optimisation method available options:
x=0: Direct (Implementation of basis functions side by system matrix in each tomographic
iterative loop).
x=1: Nested EM.
x=2: Iterative non-negative Least-Square (C.L. Lawson and R.J. Hanson, Solving Least
Squares Problems).

• Parametric images init: path (optional) Parametric images initialization using an interfile
image located at the provided path.

9

3.4 One tissue compartment model:

This class implements a 2 compartments kinetic model, or 1 Tissue Compartment Model (1TCM),
for perfusion quantitation for radiotracers such as 15O labeled water.

Figure 1: One tissue compartment Model with 2 parameters K1 and k2, where Cp and Ct are the
concentration in plasma and tissue respectively.

This model contains 3 parameters, including 2 rate constants, K1 (unit: v/s/v, where v is a
volume unit), k2 (unit: s-1) and the arterial volume fraction in tissue (Va), as described by the
following equations :

Cpet(t) = Ct(t) + Va ∗ Cp(t) (2)

dCt(t)/dt = K1 ∗ Cp(t)− k2 ∗ Ct(t) (3)

where Cpet(t) denotes the image value in voxel for frame t, and Ct and Cp are activity concen-
tration in tissue and plasma respectively. The model estimates K1, k2 and Va parametric images.
The input function (Cp), corresponding to the input plasma curve must be provided by the user.

This model can be initialized using either a configuration text file, or a list of options :

3.4.1 configuration file:

The file must be provided to the castor-recon main executable using the following command-line
options.

-dynamic-model _1TCM:/path/to/conf/file.txt

• Input function: (mandatory) Enter the activity concentration values (kBq/v) of the plasma
function (Cp) for each time frame (tf), on two successive lines, separated by ’,’. Time unit is
seconds :

Input function:
Cp,tf1, Cp,tf2, ..., Cp,tfn

• Integral input function:

If the integral of the plasma input function is already computed, enter the activity concentra-
tion values of its coefficients (Icp) for each time frame (tf), on two successive lines, separated
by ’,’. Time unit is seconds.

Integral input function:
Icp,tf1, Icp,tf2, ..., Icp,tfn

NOTE: If not provided by the user, this integral will be estimated from the input function. Set
the Integral method flag below to select the method for TAC integration (default: WPO)).

10

• Optimisation method: x (optional) Define the method to use for parameters estimation.
Only least-squares methods are currently available to estimate θ = (K1, k2, Va).

θ̂ =
X ′Wy

X ′WX
(4)

y = data vector

X = model matrix (Cp, Icp , Cpet)

W = weights vector (frame duration)

The different available Least-Square algorithms are

0 (default) = Iterative non-negative Least-Square. This code is derived from Turku PET
center libraries, authors: Vesa Oikonen and Kaisa Sederholm.

Based on C.L. Lawson and R.J. Hanson, Solving Least Squares Problems.

(http://www.turkupetcentre.net/petanalysis/index.html).

NOTE: K1 estimated values could still be negative as they are computed from a sub-
straction of the estimated NNLS parameters. Activity values will be kept to their original
values for the voxels involved.

1 = Standard Least Square (LS) optimisation. This algorithm can use Ridge Regression
constraint (see below). If the estimated parameter values are negative, the activity value
for the related voxels will be kept to their original number.

• Integration method: x (optional) Define the method to use for TAC integration over the
time samples.

0 (default) = Weighed parabola overlapping (WPO) (Z.Wang, D.Feng, Int. Sys. Sci 23
(1992), pp.1361-69)

1 = Trapezoidal

• Ridge parameter: Constant for Ridge Regression during Least-Square optimisation (only
available with Least-Square algorithm and not NNLS). Bounds must be provided with the
eponym options below in order to compute ridge weights and means for the new cost function:

θ̂ =
X ′Wy

X ′WX + t.Rw
+

t.RwRm

X ′WX + t.Rw
(5)

y = data vector

X = model matrix (Cp, Icp , Cpet)

W = weights vector (frame duration)

t = Ridge constant

Rw = Ridge weights

Rm = Ridge means

• Bounds: (optional) Upper / Lower Bounds for each 3 parameters, to define for each parameter
ridge means mr = (Max+Min)/2, and weights wr = 1/(Max−Min)2.

They must be provided as in the following syntax:

Bounds: K1Max, K1Min, k2Max, k2Min, VaMax, VaMin.

Default values:

K1(Max,Min) = 0.1, 0.

11

K2(Max,Min) = 0.1, 0.

Va(Max,Min) = 1. , 0.

• VA image: path/to/image (optional) Path to an interfile image containing the arterial
volume fraction value in tissue for each voxel, only K1 and k2 rate constants will be estimated
if such image is provided (Default: All parameters are estimated).

3.4.2 Command line options:

The one-tissue compartment model initialization can be directly made from the command line
options. The model just requires the samples of the plasma input curve, separated by commas:

-dynamic-model 1TCM, Cp,tf1, Cp,tf2, ..., Cp,tfn

All other options will be set to default. The optimisation algorithm will be NNLS, the integration
method for TAC will be WPO.

12

3.5 Parameters common to all dynamic model:

The following keywords are optional and common to each dynamic model (Dynamic frame, Respi-
ratory gating or Cardiac gating). They control the main functions dedicated to the estimation of
the model parameters, and the re-estimation of the image using the model:

• Number of iterations before image update: x

Set a number x of iteration to reach before using the model to generate the images at each
frames/gates (Default x == 0)

• No image update: x

If x set to 1, the reconstructed images for the next iteration/subset are not reestimated using
the model (the code just performs standard independent reconstruction of each frames/gates)
(Default x = 0).

• No parameters update: x

If set to 1, the parameters / functions of the model are not estimated with the image (this
could be used to test The EstimateImageWithModel() function with specific user-provided
parametric images) (Default x = 0).

• Save parametric images : x

Enable (1)/Disable(0) saving parametric images on disk (Default x == 1)

• Save blacklisted voxels images : x

Enable (1)/Disable(0) saving blacklisted voxels images on disk (Default x == 0)

• Mask : x

Path to an interfile image containing a mask indicating if the model must be applied (1) or
not (0) in each voxel (Default: model applies everywhere)

4 castor-imageDynamicTools toolkit

This utility can be used to apply any of the dynamic model implemented in CASToR over a set
of dynamic images. This can be used either to test a dynamic model, or to apply the model as a
post-reconstruction processing.

As with castor-recon, the dynamic model should be called with -dynamic-model. The set of
dynamic image (either a dynamic image, or the metaheader of a set of dynamic images), or a
dynamic image must be called with the -i option.

Please look at section 8 of the general documentation to have a description of the dynamic image
interfile format. Additionally, the -h option will display all command line options provided by this
utility.

13

5 Add your own dynamic model

5.1 Basic concept

The addition of a new dynamic model mostly require to implement these two functions. Note that
these functions can be individually enabled/disabled depending on the values of some parameters
implemented by vDynamicModel specific to vDynamicModel as specified in section 3.5.

The addition of a new image-based dynamic model require to build a specific class that in-
herits from the abstract class vDynamicModel. Then, one just has to implement a set of pure
virtual functions for the initialization and application of the model. Please refer to the CAS-
ToR HowTo add new modules.pdf guide in order to fill up the mandatory parts of adding a new
module; namely the auto-inclusion mechanism, the interface-related functions and the management
functions. To ease the implementation, a template class is provided in the source code and already
implements all the squeleton. Basically, one will have to change the name of the class and fill
the related functions up in his own code. The actual files are include/dynamic/iDynamicModel-
Template.hh and src/dynamic/iDynamicModelTemplate.cc and are already part of the source code.
Right below are some instructions to help fill the specific pure virtual projection functions of a
dynamic model.

5.2 Implementation of the dynamic model functions

Several mandatory functions should be implemented (or return an error by default) in a new dynamic
model class :

ShowHelp(): Simply output some help and guidance to describe what the dynamic model does
and how to use it.

ReadAndCheckOptionsList(): Implement here the reading of any options specific to this dy-
namic model passed through the argument const string& a listOptions. The user can
make use of the ReadStringOption() function to parse the list of parameters. If the function
is not mandatory (e.g initialization of the model using a file is required rather than with
command-line parameters), just send an error message and return 1.

ReadAndCheckConfigurationFile(): Implement here the reading of any configuration file spe-
cific to this dynamic model, passed through the argument const string& a fileOptions.
The user can make use of the ReadDataASCIIFile() function to read data from a file. If
the function is not mandatory (e.g initialization of the model using command line options is
required rather than with a file), just send an error message and return 1.

CheckParameters(): Use this function to check if the private parameters of your class have
correctly been initialized. It might be a good idea to initialize all private parameters in the
constructor with default erroneous value to properly check their initialization.

InitializeSpecific(): Use this function to Instanciate/Initialize any member variables/arrays after
the parameters have been checked in the previous function.

EstimateModelParameters(): The estimation of the model parameters and parametric images
must be implemented here, with the help of any private functions if required. The ap ImageS
parameter allows to access the image matrices in the oImageSpace class. The current estima-
tion of the image m4p image can be accessed from there. It contains 4 dimensions in order to
access to any dynamic level :

ap ImageS− > m4p image[fr][rg][cg][v]
fr = time frames
rg = respiratory gates
cg = cardiac gates
v = actual voxel of the 3D volume

14

EstimateImageWithModel(): This function can be used to generate the serie of dynamic im-
ages from the model (i.e, the image matrix ap ImageS− > m4p image), after estimation of
the model parameters in EstimateModelParameters(). It is called right after EstimateModel-
Parameters()

All information and the tools needed to implement these functions are fully described in the
template source file src/dynamic/iDynamicModelTemplate.cc, so please refer to it.

15

6 Meta-data command line options

List of the different set of options related to image-based dynamic models :

• -frm path/to/file: Give the framing details for the reconstruction where ’list’ is a list of frame
start times, separated with commas. Duration for each frame can also be specified using a colon
after the frame start time. When no duration is specified for a frame, the duration will be set
equal to the difference between the start of this frame and the next one. It is mandatory to spec-
ify the duration of the last frame. For example ’-frm start1:duration1,start2,start3:duration3’.
Add ’s’ or ’m’ to specify if values are seconds or minutes (seconds is the default if none pro-
vided). Maximum precision of frames is milliseconds. (default: 1 frame of the whole input file
duration).

• -g path/to/file: Give a text file defining the gating of the dynamic data. The number of gates,
and number of events in each gate, must be provided using different keywords :

nb respiratory gates: number of respiratory gates in the data

nb events respiratory gates: enter the number of events within each gate, separated by
commas. If the data contains several frame (dynamic acquisition), the data splitting of
each frame should be entered on a new line (1 line by frame).

nb cardiac gates: number of cardiac gates in the data

nb events cardiac gates: enter the number of events within each gate, separated by com-
mas. If the data contains several frame (dynamic acquisition), the data splitting of each
frame should be entered on a new line (1 line by frame).

duration gate: (optional) enter the duration (seconds) of each gate, separated by commas.
If the data contains several frames (dynamic acquisition), the gate durations of each
frame should be entered on separate line (1 line by frame).

• -aic path/to/file: This option will enable the Creation of Patlak Basis functions for direct
Patlak Reconstruction (For nested recon look in -help-dynamic-model). Provide text file with
the Arterial Input Curve data points and time points, in two different horizontal lines starting
with ’AIC time points:’ and ’AIC data points:’ to indicate which dataset corresponds to each
line. Values must be separated by commas. Also provide a value of the total number of data
points, on a new line starting with ’AIC number of points:’.

• -qdyn path/to/file: Provide a text file containing quantitative factors specific to dynamic
frames, respiratory or cardiac gates. The file should provide factors with the keywords
’FRAME QUANTIFICATION FACTORS’ and ’GATE QUANTIFICATION FACTORS’. The
number of factors must be consistent with the number of frames/gates. If the data contains
several frames and gates, the gate quantification factors should be entered on a separate line
for each frame

• -help-dynamic-model Print out specific help about dynamic model

16

