
Image convolvers in CASToR

June 14, 2019

Foreword

CASToR is designed to be flexible, but also as generic as possible. Any new implementation should
be thought to be usable in as many contexts as possible; among all modalities, all types of data, all
types of algorithms, etc.

Before adding some new code to CASToR, it is highly recommended to read the general docu-
mentation CASToR general documentation.pdf to get a good overview of the project, as well as the
programming guidelines CASToR programming guidelines.pdf. Also, the philosophy about adding
new modules in CASToR (e.g. projectors, optimizers, deformations, image processing, etc) is fully
explained in CASToR add new modules.pdf. Finally, the doxygen documentation is a very good
resource to help understanding the code architecture.

1 Summary

This HowTo guide describes how to add your own image convolver into CASToR. CASToR is mainly
designed to be modular in the sense that adding a new feature should be as easy and flexible as
possible. This guide begins with a rough description of the image convolver part of the CASToR
architecture that explains the chosen philosophy. Then follows a step-by-step guide that explains
how to add a new image convolver by simply adding a new class with few mandatory requirements.

2 The image convolver architecture

The image convolver part of the code is based on 2 main classes: oImageConvolverManager and
vImageConvolver. The main program will instantiate and initialize the oImageConvolverManager.
It is in charge of reading command line options and instantiating the different children of vImage-
Convolver. As many convolvers as desired can be used/combined, each one is declared by the option
-conv when executing the reconstruction code. To get some help on how to use it and a list of
the implemented convolvers, execute the program with the option -help-conv. The option format
follows the philosophy described in CASToR HowTo add new modules.pdf. Any image convolver
can be used at different places during the program execution. For iterative algorithms, it can be
used on the image to be forward-projected, on the back-projected correction terms, on the current
estimated image either as a post-processing step (applied to the image to be saved), or as an intra-
iterations processing (the convolved image is put back into the next update as the current estimate).

During the initialization the oImageConvolverManager will call the BuildConvolutionKernel()
function of each image convolver to actually build the convolution kernels. All convolutions are
based on a pre-computed convolution kernel which is then used by the Convolve() and Convol-
veTranspose() functions when applying the convolution to images. These functions are already
implemented by the vImageConvolver abstract class, for stationary kernels. If one wants to im-
plement a non-stationary convolution, one has to overload these functions in the child convolver.
The Convolve() and ConvolveTranspose() are used by the oImageConvolverManager to apply the
convolution when the user asked for during the execution of the program. More specifically, the Con-
volverTranspose() function is applied on the back-projected correction terms and on the sensitivity

1

image, when used within iterative algorithms. In any other cases, the Convolve() function is applied.

Below is a more detailed description of how the image convolvers are used and how to add your
own.

3 Add your own image convolver

3.1 Basic concept

To add your own image convolver, you only have to build a specific class that inherits from the
abstract class vImageConvolver. Then, you just have to implement a bunch of pure virtual func-
tions that will correspond to the specific stuff you want your new image convolver to do. Please
refer to the CASToR add new modules.pdf guide in order to fill up the mandatory parts of adding
a new module (your new image convolver is a module); namely the auto-inclusion mechanism, the
interface-related functions and the management functions. Right below are some instructions to
help you fill the specific pure virtual functions of your image convolver.

To make things easier, we provide an example of template class that already implements all the
squeleton. Basically, you will have to change the name of the class and fill the functions up with
your own code. The actual files are include/image/iImageConvolverTemplate.hh and src/image/i-
ImageConvolverTemplate.cc and are actually already part of the source code.

3.2 Implementation of the specific functions

There are 3 functions of interest:

BuildConvolutionKernel() : This function is pure virtual in vImageConvolver so it has to be
implemented by the specific image convolver inheriting from it.

Convolve() : This function is virtual but has an implementation within vImageConvolver. However
it is only designed for stationary kernels. It has to be overloaded in the case of non-stationary
kernels.

ConvolveTranspose() : This function is virtual but has an implementation within vImageCon-
volver. However it is only designed for stationary kernels. It has to be overloaded in the case
of non-stationary kernels.

All information and the tools needed to implement these functions are fully described in the
template source file src/image/iImageConvolverTemplate.cc, so please refer to it.

To be as generic as possible, a convolution is not performed in the Fourrier space but is based
on convolution kernels. The kernels built by the BuildConvolutionKernel() function are computed
during the initialization. The kernels are described using the following members of vImageConvolver :

Listing 1: Variables members of vImageConvolver describing the convolution kernels.

1 // The number of kernels (1 if stationary , more otherwise

2 INTNB m_nbKernels;

3 // The dimension of each kernel along X

4 INTNB* mp_dimKernelX;

5 // The dimension of each kernel along Y

6 INTNB* mp_dimKernelY;

7 // The dimension of each kernel along Z

8 INTNB* mp_dimKernelZ;

9 // The actual kernels , first pointer for the number of kernels , second ←↩
pointer for the kernel values

10 FLTNB** mpp_kernel;

2

The member m nbKernels specifies the number of kernels. In the stationary case, this number is
equal to 1. In the non-stationary case, it is greater than 1. For each kernel, its dimensions along each
axis are specified by the members mp dimKernelX, mp dimKernelY and mp dimKernelZ. Finally,
the values of each kernel are specified by the member mpp kernel. The values for a kernel i are
specified in the table mpp kernel[i]. These values are organized as for the images: the 3 spatial
dimensions are flattened in a single dimension. Basically, if one wants the kernel value for X=x,
Y=y and Z=z, this is done through:

Listing 2: How to access kernel value for X=x, Y=y and Z=z of kernel i

1 INTNB kernel_index = z*mp_dimKernelX[i]*mp_dimKernelY[i] + y*←↩
mp_dimKernelX[i] + x;

2 FLTNB kernel_value = mpp_kernel[i][kernel_index];

So inside the BuildConvolutionKernel() function, one has to allocate and specify all these mem-
bers describing the convolution kernels. If the convolution is stationary, this is the only thing to do.
In the non-stationary case, the organization of the actual kernels values and positions is up to the
user who has to overload the Convolve() and ConvolveTranspose() functions. Their implementation
is also up to the user, so as to be in agreement with how the kernels are organized.

To speed up the convolution operations, the image to be convolved is copied into a padded
buffer. Note that this is automatically done by the oImageConvolverManager before calling any of
the Convolve() or ConvolveTranspose() functions. The padded buffer is the actual image with some
null (zero) values added all around. The amount of zeros added along each dimension is based on
the maximum kernel size with respect to this dimension. In the convolution code, all loops can thus
be made without any checks, speeding up the execution. To see how it is done for stationary kernels,
look at the implementation of the vImageConvolver::Convolve() function. So, when implementing
the convolution for non-stationary kernels, the image to be convolved is in mp paddedImage member
of vImageConvolver. Its dimensions and pad offsets can be found in the following members:

Listing 3: Variables members of vImageConvolver describing the padded image buffer.

1 // The actual padded buffer image

2 FLTNB* mp_paddedImage;

3 // The offset of the padded image along X

4 INTNB m_offsetX;

5 // The offset of the padded image along Y

6 INTNB m_offsetY;

7 // The offset of the padded image along Z

8 INTNB m_offsetZ;

9 // The number of voxels of the padded image along X

10 INTNB m_dimPadX;

11 // The number of voxels of the padded image along Y

12 INTNB m_dimPadY;

13 // The number of voxels of the padded image along Z

14 INTNB m_dimPadZ;

15 // The number of voxels of the padded image in a slice

16 INTNB m_dimPadXY;

17 // The total number of voxels of the padded image

18 INTNB m_dimPadXYZ;

The convolved image has to be written inside the output image provided as a parameter of the
Convolve() or ConvolveTranspose() functions.

3

